Banff VCA Summary Session

Linda C. Cendales, M.D.
Associate Professor of Surgery
Director, Vascularized Composite Allotransplantation
Duke University Medical Center

On behalf of the Banff VCA Working Group
VCA Banff

Trachea Transplantation – Eric Genden, M.D.
Phallus Transplantation- Curtis Cetrulo, M.D.
The Dallas Uterus Transplant Study: Histological and Clinical Update – Jake Demetris, M.D.
Update on Uterus Transplantation Pathology – Verena Brocker, M.D.
Non-invasive biomarkers of rejection in VCA – Leo Riella, M.D.
Vascular Changes in VCA – Jean Kanitakis, M.D.
Treatment of acute rejection in VCA – Simon Talbot, M.D.
Revision of the VCA-Banff scoring system – Group Discussion
Trachea Transplantation –
Eric Genden, M.D. Mount Sinai Medical Center

Stent – esophageal fistula

Long segment reconstruction

Day 5 Day 18 Day 42

What have we learned?

Single stage vascularized tracheal transplantation is possible.

Standard immunosuppression appears effective.

The graft initially sloughs epithelium.

The allograft undergoes re-epithelialization in a chimeric fashion.
6 Years Post Op

Successful Aesthetic Outcome

Successful Urinary Function Outcome (no complications)

Sensory return at 2 years

Successful Sexual Function Returned at 3 years

Sexually active patient

Able to maintain erections and ejaculate
Cervix at day 0 (a) and 29 (b) after withdrawal of immunosuppression. Discoloration is shown at day 29.

Conclusions

Orderly progression of gross and histopathological findings of rejection but pace of evolution differs

More severe forms of rejection

- cervical cyanosis with/out altered flora and vaginal discharge
- as severity increased signs of mixed rejection appears
- C4d staining often first detected in lamina propria capillaries

Antibody sensitization: DSA > PSA
Update on Uterus Transplantation Pathology
Verena Brocker, M.D. University of Gothenburg

163 biopsies in 7 patients, 36 months follow up

<table>
<thead>
<tr>
<th>Grading</th>
<th>Biopsies</th>
<th>Patients (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejection</td>
<td>13/163 (8%)</td>
<td>5/7</td>
</tr>
<tr>
<td>G1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>15/163 (9%)</td>
<td>5/7</td>
</tr>
<tr>
<td>Normal</td>
<td>135/163 (83%)</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions from transplant hysterectomies

- Rejection (mild) occurs but without clear association to outcome
- Inflammation in the cervix mirrors inflammation in the myometrium and arteries
- "Borderline" is not specific for transplants, although more frequent
- Endocervical inflammation is not diagnostic
- Morphological spectrum of rejection includes,
 - Linear subepithelial stromal inflammation, interface inflammation
 - Perivascular stromal inflammation (?)
 - Inflammatory foci in the myometrium
 - Endarteritis in larger arteries

Molne, J., V. Broecker, … M. Brannstrom
AJT 2017

Broecker V, et al. AJT 2021
Non-invasive biomarkers of rejection in VCA – Leo Riella, M.D.
Massachusetts General Hospital

Th17 and Th1 cells peak during rejection both in the blood and in the allograft of face transplant recipients

Borges et al. AJT 2016

Many similarities in human VCA and solid organ transplant rejection

Significant overlap of signals:
- leukocyte trafficking, T cell activation, antigen processing and presentation, and effector molecules

Win et al. JCI 2020

Serum MMP3 is a marker of severity of VCA rejection

Multicenter study – 140 serum samples (both face and limb recipients)

Collaboration with Emmanuel Morelon
Kollar et al. Frontiers Imm 2019

Conclusions

- Th17 and Th1 cells peak during rejection both in the blood and in the allograft of VCA recipients
- Serum MMP3 protein is a promising marker for stratifying patients according to severity of rejection, complementary to biopsy findings.
- DSA are the best transplant-specific biomarkers to monitor post-transplant
- Non-HLA antibody levels seem to correlate with severity of injury. Though the role on nonHLA antibodies in the pathogenesis is unclear.
Vascular Changes in VCA - Personal experience—Jean Kanitakis, M.D.

Ed. Herriot Hospital

Small vessel skin (leukocytoclastic ±) vasculitis in face VCA during severe rejection

Chronic rejection in face VCA

Skin capillary thromboses in hand transplantation

Pre-DSA

Post-DSA

Graft vasculopathy - ischemic graft necrosis
Treatment of acute rejection in VCA – Simon Talbot, M.D.

Brigham and Women's Hospital

• Typical
 • Maculopapular rash (diffuse, patchy, or focal)
 • Sparing palmar skin and nails
 • Possible pain

• Atypical
 • Palmar skin and nail involvement
 • Desquamation with red papules, scaling, lichenification of the palm
 • Nail dystrophy, degeneration, deformation

• Overlapping clinical presentation of chronic rejection and anti-body-mediated rejection – still to be defined

• Unique advantages of VCA
 • Continuous monitoring is possible
 • Topical application
 • Biopsies are minimally morbid

Future directions

• Local/targeted drug delivery systems (steroids, tacrolimus, cyclosporine)
 • Thermoresponsive nanogels
 • PLC microfilms
 • PLGA plugs/microspheres
 • Macroporous scaffolds
 • Suspensions
 • Hydrogels
The VCA Banff Working Group Discussion

First Revision of the Classification
Banff VCA
NIH Consensus Development Program

- Broad based, non advocacy independent panel
- Freedom from scientific or financial conflict of interest
- Systematic literature review
- Invited speakers
- Predetermined questions defining the scope and direction of the conference
- Conclusions summarized as Consensus Report and submitted for peer review publication
- Reconvene to evaluate how the classification is working
The VCA Banff Working Classification of Allograft Pathology
Common Language

Skin containing VCA

$N = < 300$ recipients reported worldwide

Kidney

$N = > 200,000$ recipients reported worldwide
Timeline for the First Revision of the Scoring System

<table>
<thead>
<tr>
<th>May 2016</th>
<th>May 2022</th>
<th>July 2022</th>
<th>August 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Survey # 1</td>
<td>• Survey #2</td>
<td>• Virtual Consensus Discussion</td>
<td>• Survey #3</td>
</tr>
<tr>
<td>• I International Workshop on VCA</td>
<td>• Pathologists</td>
<td></td>
<td>• Pathologists</td>
</tr>
<tr>
<td></td>
<td>• Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 12, 2022</td>
<td>September 22, 2022</td>
<td>October 2022</td>
<td></td>
</tr>
<tr>
<td>• Virtual Consensus Discussion</td>
<td>• Final Consensus Discussion</td>
<td>• Manuscript preparation</td>
<td></td>
</tr>
<tr>
<td>• Pathologists</td>
<td>• Consensus achieved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Timeline for the First Revision of the Scoring System

May 2016

- Survey # 1
- I International Workshop on VCA

http://aperio.duhs.duke.edu/Pathology-Cendales/view.apml

Complete consensus: 8 out of 8
Almost complete consensus: 7 out of 8
Partial consensus: 4 out of 8 (50%)
Poor consensus: less than 50% agreement
Timeline for the First Revision of the Scoring System

May 2022

- Survey #2
- Pathologists
- Clinicians

July 2022

- Virtual Consensus Discussion

Q6 - Do you use the VCA Banff system?
Criteria to evaluate rejection severity and monitoring

- Arteritis (endarteritis, endothelialitis)
- Vascular narrowing (e.g. Chronic graft Vasculopathy)
- Microvessel thrombosis
Systematic pathological component scores for skin-containing vascularized composite allografts

Ivy A. Rosales, Ruth K. Foreman, Matthew DeFazio, David H. Sachs, Curtis L. Cetrulo, Jr., David A. Leonard, and Robert B. Colvin

Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; VCA Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Charlestown, MA, USA; TBRC Laboratories Center for Transplantation Sciences, Massachusetts General Hospital, Charlestown, MA, USA; Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, Scotland, UK

Systematic scoring system developed from MHC-mismatched porcine skin-containing VCA.
Biopsies from 20 VCA, 9 autologous skin flaps and 9 normal skin were analyzed to optimize the methodology and set thresholds.
Transplant Arteriopathy

Transplant Arteriopathy is defined as arterial fibrointimal thickening, also referred to as vascular fibrous intimal thickening.

It is graded based on the extent of luminal occlusion in the most severely affected artery.

It does not discriminate between bland arterial intimal fibrosis and fibrosis containing leukocytes.

Transplant arteriopathy is scored with the Banff Lesion Score cv.

- $cv0$—No chronic vascular changes.
- $cv1$—Vascular narrowing of up to 25% luminal area by fibrointimal thickening.
- $cv2$—Vascular narrowing of 26 to 50% luminal area by fibrointimal thickening.
- $cv3$—Vascular narrowing of more than 50% luminal area by fibrointimal thickening.

- Arteritis (endarteritis, endothelialitis)
- Vascular narrowing (e.g. Chronic graft Vasculopathy)
- MicrovesSEL thrombosis
Arteritis

<table>
<thead>
<tr>
<th>Definition</th>
<th>VCA</th>
<th>KIDNEY</th>
<th>Similarities</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endarteritis: Mononuclear cells underneath arterial endothelium, scored on the most involved artery, arterioles not scored</td>
<td>Arteritis, Intimal: Synonymous with endarteritis or arterial endothelialitis. Banff 2015: defined as mononuclear cell infiltration beneath the arterial endothelium. Arterioles are not scored. Total number of arteries in the biopsy and the number of arteries affected should be noted.</td>
<td>✓ . (mononuclear cells underneath the endothelium)</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>

Score

<table>
<thead>
<tr>
<th>VCA</th>
<th>KIDNEY</th>
<th>Similarities</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>No arteries</td>
<td>✓ .</td>
<td>----</td>
</tr>
<tr>
<td>V1</td>
<td><25% of lumen/vessel</td>
<td>Mild to moderate intimal arteritis in at least 1 arterial cross section</td>
<td>Use degree of inflammation</td>
</tr>
<tr>
<td>V2</td>
<td>>25% of lumen/vessel</td>
<td>Severe intimal arteritis with at least 25% luminal area lost in at least 1 arterial cross section</td>
<td>✓ .</td>
</tr>
<tr>
<td>V3</td>
<td>Fibrinoid necrosis/transmural involvement</td>
<td>Transmural arteritis and/or arterial fibrinoid changes and medial smooth muscle necrosis with lymphocytic infiltrate in vessel</td>
<td>✓ .</td>
</tr>
<tr>
<td>Vx</td>
<td>No arteries</td>
<td>Based on biopsy requirements</td>
<td>----</td>
</tr>
</tbody>
</table>
Vasculopathy

<table>
<thead>
<tr>
<th>VCA</th>
<th>KIDNEY</th>
<th>Similarities</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Chronic allograft vasculopathy: intimal thickening with luminal reduction, scored as percent luminal reduction</td>
<td>Chronic allograft arteriopathy: Arterial intimal fibrosis with mononuclear cell infiltration in fibrosis and/or formation of neointima.</td>
<td>✓ . (intimal thickening)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAV0</td>
<td>None</td>
<td>CV0—No chronic vascular changes</td>
<td>✓ .</td>
</tr>
<tr>
<td>CAV1</td>
<td><25% luminal reduction</td>
<td>CV1—Vascular narrowing of up to 25% luminal area by fibrointimal thickening.</td>
<td>✓ .</td>
</tr>
<tr>
<td>CAV2</td>
<td>>25-50 % luminal reduction</td>
<td>CV2—Vascular narrowing of 26 to 50% luminal area by fibrointimal thickening.</td>
<td>✓ .</td>
</tr>
<tr>
<td>CAV3</td>
<td>>50% luminal reduction</td>
<td>CV3—Vascular narrowing of more than 50% luminal area by fibrointimal thickening.</td>
<td>✓ .</td>
</tr>
<tr>
<td>CAVx</td>
<td>No arteries</td>
<td>Based on biopsy requirements</td>
<td>---</td>
</tr>
</tbody>
</table>
Timeline for the First Revision of the Scoring System

August 2022
• Survey #3
• Pathologists

September 12, 2022
• Virtual Consensus Discussions

Arteritis, Vasculopathy, Microvessel thrombosis

Terminology
Definition
Scoring System
Reporting System
Timeline for the First Revision of the Scoring System

September 22, 2022

• Final Discussion
• Consensus achieved
DRAFT- Vascular Changes

Vasculitis/Arteritis

Def- Mononuclear cells underneath vessel endothelium, scored on the most involved vessel, including capillaries, arterioles, venules, veins, arteries. The number of involved arteries and the total number of arteries to be scored.

Scoring-
V0 No arteritis.
V1 Mild to moderate intimal arteritis in at least 1 arterial cross section.
V2 Severe intimal arteritis with at least 25% luminal area lost in at least 1 arterial cross section.
V3 Transmural arteritis and/or arterial fibrinoid change and medial smooth muscle necrosis with lymphocytic infiltrate in vessel.
Vx no arterie

Reporting Modifier

Allograft Vasculopathy

Def- combination of option 1 and option 2

Scoring-
CAV0 None
CAV1 25-50 % luminal reduction
CAV3 >50% luminal reduction
CAVx No arteries

Reporting Modifier

Small vessel thrombosis

Def- small vessel thrombosis

Scoring- Present/absent

Reporting Modifier "t"
Timeline for the First Revision of the Scoring System

October 2022

- Manuscript preparation
Summary

• Common language
• International Collaboration
• Consensus discussions
• Refined the universally accepted criteria for VCA rejection reporting
 • Addition of vascular changes
• Living document
• Working classification for dissemination to the healthcare practice and transplant community
Thank you

Angelica Selim, M.D. - Duke University

Armando Gamboa Dominguez, M.D. - Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán

Brad Farris, M.D. - Emory University

Cynthia Drachenberg, M.D. - University of Maryland

David Elder, M.D. - University of Pennsylvania

Ivy Rosales, M.D. - Massachusetts General Hospital

Jean Kanitakis, M.D. - Ed. Herriot Hospital

Xiaowei (George) Xu, M.D. University of Pennsylvania

Simon Talbot, M.D. Brigham and Women's Hospital

Bruce Gelb, M.D. NYU

Brian Nankivell, M.D. Westmead Hospital

All attendees of the VCA Banff Consensus Discussion Working Group Sessions